A Different Construction of Gaussian Fields from Markov Chains: Dirichlet Covariances Une Nouvelle Construction De Champs Gaussiens À Partir De Chaînes De Markov
نویسندگان
چکیده
– We study a class of Gaussian random fields with negative correlations. These fields are easy to simulate. They are defined in a natural way from a Markov chain that has the index space of the Gaussian field as its state space. In parallel with Dynkin’s investigation of Gaussian fields having covariance given by the Green’s function of a Markov process, we develop connections between the occupation times of the Markov chain and the prediction properties of the Gaussian field. Our interest in such fields was initiated by their appearance in random matrix theory. 2002 Éditions scientifiques et médicales Elsevier SAS MSC: 60G15; 60J27
منابع مشابه
Adaptive estimation of stationary Gaussian fields
We study the nonparametric covariance estimation of a stationary Gaussian field X observed on a regular lattice. In the time series setting, some procedures like AIC are proved to achieve optimal model selection among autoregressive models. However, there exists no such equivalent results of adaptivity in a spatial setting. By considering collections of Gaussian Markov random fields (GMRF) as a...
متن کاملChaînes et arbres de Markov évidentiels avec applications à la segmentation des processus non stationnaires Evidential Markov chains and trees with applications to non stationary processes segmentation
Résumé Les chaînes de Markov Triplet (CMT) généralisent les chaînes de Markov Couple (CMCouple), ces dernières généralisant les chaînes de Markov cachées (CMC). Par ailleurs, dans une CMC la loi a posteriori du processus caché, qui est de Markov, peut être vue comme une combinaison de Dempster de sa loi a priori avec une probabilité définie à partir des observations. Lorsque l’on se place dans ...
متن کاملA Different Construction of Gaussian Fields from Markov Chains: Dirichlet Covariances
We study a class of Gaussian random elds with negative correlations. These elds are easy to simulate. They are de ned in a natural way from a Markov chain that has the index space of the Gaussian eld as its state space. In parallel with Dynkin's investigation of Gaussian elds having covariance given by the Green's function of a Markov process, we develop connections between the occupation times...
متن کاملData-driven neighborhood selection of a Gaussian field
We study the non-parametric covariance estimation of a stationary Gaussian field X observed on a lattice. To tackle this issue, we have introduced a model selection procedure in a previous paper [Ver09]. This procedure amounts to selecting a neighborhood m̂ by a penalization method and estimating the covariance of X in the space of Gaussian Markov random fields (GMRFs) with neighborhood m̂. Such ...
متن کاملA Functional Central Limit Theorem for a Class of Interacting Markov Chain Monte Carlo Models
We present a functional central limit theorem for a new class of interaction Markov chain Monte Carlo interpretations of discrete generation measure valued equations. We provide an original stochastic analysis based on semigroup techniques on distribution spaces and fluctuation theorems for selfinteraction random fields. Besides the fluctuation analysis of these models, we also present a series...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002